Lie-algebraic stability conditions for nonlinear switched systems and differential inclusions
نویسندگان
چکیده
We present a stability criterion for switched nonlinear systems which involves Lie brackets of the individual vector fields but does not require that these vector fields commute. A special case of the main result says that a switched system generated by a pair of globally asymptotically stable nonlinear vector fields whose third-order Lie brackets vanish is globally uniformly asymptotically stable under arbitrary switching. This generalizes a known fact for switched linear systems and provides a partial solution to the open problem posed in [11]. To prove the result, we consider an optimal control problem which consists in finding the “most unstable” trajectory for an associated control system, and show that there exists an optimal solution which is bang-bang with a bound on the total number of switches. This property is obtained as a special case of a reachability result by bang-bang controls which is of independent interest. By construction, our criterion also automatically applies to the corresponding relaxed differential inclusion.
منابع مشابه
Stability of switched systems: a Lie-algebraic condition∗
We present a sufficient condition for asymptotic stability of a switched linear system in terms of the Lie algebra generated by the individual matrices. Namely, if this Lie algebra is solvable, then the switched system is exponentially stable for arbitrary switching. In fact, we show that any family of linear systems satisfying this condition possesses a quadratic common Lyapunov function. We a...
متن کاملStability of switched systems : a Lie - algebraic
We present a suucient condition for asymptotic stability of a switched linear system in terms of the Lie algebra generated by the individual matrices. Namely, if this Lie algebra is solvable, then the switched system is exponentially stable for arbitrary switching. In fact, we show that any family of linear systems satisfying this condition possesses a quadratic common Lyapunov function. We als...
متن کاملStochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کاملA new approach based on state conversion to stability analysis and control design of switched nonlinear cascade systems
In this paper, the problems of control and stabilization of switched nonlinear cascade systems is investigated. The so called simultaneous domination limitation (SDL) is introduced in previous works to assure the existence of a common quadratic Lyapunov function (CQLF) for switched nonlinear cascade systems. According to this idea, if all subsystems of a switched system satisfy the SDL, a CQLF ...
متن کاملPiecewise Polynomial Lyapunov Functions for a Class of Switched Nonlinear Systems
This paper proposes sufficient conditions to the regional stability analysis of switched nonlinear systems with time-varying parameters. The nonlinear sub-modes of operation are described by means of differential-algebraic equations involving the state and an auxiliary nonlinear vector. We then use piecewise polynomial Lyapunov functions and a relaxation technique that lead to a convex characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Systems & Control Letters
دوره 55 شماره
صفحات -
تاریخ انتشار 2006